
Chapter 4

[79]

When we talk about n-tier applications, we are referring to medium-size to
enterprise-size applications. Many beginner developers have this urge to make every
software system they develop an n-tier system, even when the project doesn't need
to be tiered at all. For example, it would not be worth developing a simple guestbook
application for a personal website on an n-tier architecture as it would take a lot of
time and money, besides complicating the simple system for no tangible benefits.

But we need to think beyond layers and 1-tier applications when we deal with
applications such as commercial websites with large user bases, medium to large
software systems that need built-in interoperability and redundancy, and
flexibly-distributed solutions. We need to separate out the business logic and data
access code into their own assemblies to make the application further distributed and
loosely-coupled in nature.

The parameters described in the following sections can be used to decide whether we
want to go for a n-tier system or a simple layered solution.

Performance
Application performance is always a prime consideration when working on any
project. The more the code is separated into different assemblies, the slower it
becomes. See this diagram here:

UI + BL +DAL

All code in one assembly Code distributed in multiple assemblies

UI BL DAL

The reason for this slow performance is simple. It takes longer for a method in one
assembly to call a method in another assembly than it would take if the method was
in the same assembly. Some time is needed to refer to the other assembly, and read,
find, and execute the required code. This time can be avoided if we have the code in
the same physical DLL.

So if we separate the logically-layered code into different physical assemblies,
then we will suffer a mild performance hit. I used the word mild because modern
machines have a lot of computing power, and the performance hit is almost
negligible. So if we consider this mild performance hit, then how can an architecture
based on n-tier actually increase performance of the application?

N-Tier Architecture

[80]

It all depends on the way a single-processor on a machine works. On a single-
processor machine, all operations, including the code executing the UI and the
business logic, the connection to the database server (which is another application),
fetching data, and so on, are handled by a single CPU. So it can handle only one
instruction at a time. If the application has a long list of pending operations, then
the processor will be hogged and will run slow, causing a bottleneck. But if we can
distribute the application load so that we can use multiple processors (on multiple
machines), then we can have substantial performance gains. Of course, to reap this
benefit, the load itself should be quite high in the first place. If the load is always low,
then we will lose more from having distributed tiers "talk" to each other than we will
gain from distributing the workload.

So should we put the DAL and BL assemblies on different machines to balance load?
The answer is no. The reason being the fact that before deciding to allocate the tiers
to their own processors (by putting them on different machines with own CPU), we
first need to identify the main load bearing components.

Before we go further, we need to understand the term "load". In web applications,
load refers to the quantum of computing power required to serve client requests. In
most web based applications, the load is usually handled by:

A database
The ASP.NET worker process (w3wp.exe in Windows 2003/2008,
or aspnet_wp.exe in Windows XP)

For large load applications, it is advisable to have the database on a separate,
dedicated machine, so that it does not compete with the ASP.NET worker process for
CPU cycles. Here is the configuration:

LAN network

Database Server Application Server

ASP.NET worker process is an OS-level process which handles the .NET
runtime. IIS handles the client requests and passes them on to the ASP.
NET worker process.

•

•

